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GATE

SOURCE

DRAIN

SUBSTRATE
GSmDS vgi ⋅=

Y. Tsividis, Operation and Modeling
of The MOS Transistor, 2nd edition,

McGraw-Hill, 1999, p. 35x

y

z

Transconductance



Giovanni ANELLI -  CERN

CMOS technology
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I - V Characteristics (NMOS)
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MOS transistor equations
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Why is CMOS so widespread?
• IC market is driven by digital circuits (memories,

microprocessors, …)

• Bipolar logic and NMOS - only logic: too high
power consumption per gate

• Progress in the manufacturing technology made
CMOS technologies a reality

• Modern CMOS technologies offer excellent
performance: high speed, low power consumption,
VLSI, low cost, high yield

CMOS technologies occupies an increasing
portion of the IC market
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Moore’s law
1965: Number of Integrated Circuit components will double every year

G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics, vol. 38, no. 8, 1965.

1975: Number of Integrated Circuit components will double every 18 months
G. E. Moore, “Progress in Digital Integrated Electronics”, Technical Digest of the IEEE IEDM 1975.

The definition of “Moore’s Law” has come to refer to almost anything related
to the semiconductor industry that when plotted on semi-log paper
approximates a straight line. I don’t want to do anything to restrict this
definition. - G. E. Moore, 8/7/1996
P. K. Bondyopadhyay, “Moore’s Law Governs the Silicon Revolution”, Proc. of the IEEE, vol. 86, no. 1, Jan. 1998, pp. 78-81.

1996:

http://www.intel.com/

An example:
Intel’s Microprocessors
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Constant field scaling

B. Davari et al., “CMOS Scaling for High Performance and Low Power - The
Next Ten Years”, Proc. of the IEEE, vol. 87, no. 4, Apr. 1999, pp. 659-667.

• L, W, tox, xD, V, VT, C, I, τ scale by 1/α

• Area, Power diss. for a given circuit, Charges scale by 1/α

• Power diss. per unit area, Charges per unit area do not scale

2
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Constant field scaling problem
Subthreshold slope and width of the

moderate inversion region do not scale!!!
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Generalized scaling

Y. Taur et al., “CMOS Scaling into the Nanometer Regime”, Proc. of the IEEE, vol. 85, no. 4, Apr. 1997, pp. 486-504.
Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 1998, p. 186.

• The dimensions in the device scales as in
the constant field scaling

• Vdd scales to have reasonable electric
fields in the device, but slower than tox, to
have an useful voltage swing for the
signals

• The doping levels are adjusted to have
the correct depletion region widths

• To limit the subthreshold currents, VT
scales more slowly than Vdd
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Challenges for the future

• Lithography

• Gate oxide (materials, tunneling, reliability)

• Wiring and interconnections (materials)

• Many metal layers (up to 10)

• Design complexity (CAD tools)

• Low voltage architectures



Giovanni ANELLI -  CERN

Outline
• CMOS technologies

• The concept of scaling

• Scaling impact on device and circuit performance
• Digital circuits
• Analog circuits (noise, matching, power consumption)

• Ionizing radiation effects on CMOS ICs

• Scaling impact on radiation tolerance

• Radiation tolerant design

• Circuit examples

• Conclusions



Giovanni ANELLI -  CERN

Scaling impact on digital circuits
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GND
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VOUTVIN

Example: CMOS inverter Pstatic = Ileakage ·  VDD

Pdynamic = CL ·VDD ·  f
2

PDP = CL ·  VDD
2

Power-delay product

CL VDDtox
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MOST noise power spectral density
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Scaling impact on noise

For the same device dimensions and current, both
the channel thermal noise and the flicker ( 1/f )

noise should decrease

BUT

there can be other effects in submicron MOSFETs
that tend to increase the noise, as for example:

carriers heating, gate tunneling current, parasitic
resistances, ...
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Matching of IC components

• Design transistor pairs of different dimensions

• Measure VT and β for each transistor of each pair

• Calculate ∆ VT and ∆ β/β for each pair

• Extract σ∆ Vth and σ∆ β/β from the two distributions

Matching is the statistical study of the differences
between the electrical parameters of identically designed
components placed at a small distance in an identical
environment and used with the same bias conditions.

To characterize the mismatch between transistors we:
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Expected mismatch
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MOST VT mismatch
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Scaling impact on VT matching

Matching will limit the potential performance in sub-micron

dynamic range

M.J.M. Pelgrom et al., “Transistor matching in analog CMOS applications”,
Technical Digest of the International Devices Meeting 1998, pp. 915-918.
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∆V is the fraction of the VDD not used for signal swing

A.-J. Annema, “Analog Circuit Performance and Process Scaling”, IEEE
Transactions on Circuit and System II, vol. 46, no. 6, June 1999, pp. 711-725.

VV

V
fSNRkTP

DD

DD
sig ∆−

⋅⋅⋅=   8min π

Analog power consumption
tox scales             VDD must be scaled as well

Min. power consumption for class A analog circuits:

Optimal analog power/performance trade-off
for 0.35 - 0.25 µm technologies
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Scaling impact on analog circuits

tox scales             for the same device dimensions

• Threshold voltage matching improves

• 1/f noise decreases

• Transconductance increases (same current)
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Scaling impact on analog circuits
• New noise mechanisms

• Modeling difficulties

• Lack of devices for analog design

• Reduced signal swing (new architectures needed)

• Substrate noise in mixed-signal circuits

• Velocity saturation. Critical field: 3 V/µm for electrons,

 10 V/µm for holes

satoxsatvelm vWCg =.._
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Threshold voltage shift

Threshold voltage shift

Mobility degradation

Subthreshold slope
degradation

Other degradations:
• Transconductance
• Noise
• Matching

Ionizing particles through a MOST

F. B. McLean and T. R. Oldham, Harry Diamond Laboratories
Technical Report, No. HDL-TR-2129, September 1987.



Giovanni ANELLI -  CERN

Electron-hole pairs recombination
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Contributions to the VT shift

Oxide
charges

Interface
states

NMOS

PMOS

Total

• For deep submicron processes the sign of the VT shift for
NMOS transistors tends to be positive

• The bias conditions during irradiation have a great
influence on the absolute value of the VT shift

or
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Transistor level leakage (NMOS)
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R. Gaillard, J.-L. Leray, O. Musseau et al., “Techniques de durcissement des composant,
circuits, et systemes electroniques”, Notes of the Short Course of the 3rd European Conference
on Radiation and its Effects on Components and Systems, Arcachon (France), Sept. 1995.
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Transistor level leakage (NMOS)
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Negative threshold
voltage shift

Increase in the
subthreshold slope
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Integrated circuit level leakage
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Single Event Latch-up (SEL)
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Electrical latch-up might be initiated by electrical
transients on input/output lines, elevated

temperatures or improper sequencing of power
supply biases. These modes are normally

addressed by the manufacturer.
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Single Event Upset (SEU)
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N. S. Saks et al., IEEE TNS, vol. 31, no. 6, Dec. 1984, and vol. 33, no. 6, Dec. 1986.
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∆VT and tox scaling
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SEL and scaling

• Retrograde wells
• Thinner epitaxial layers
• Trench isolation
• VDD reduced

A. H. Johnston, “The Influence of VLSI Technology Evolution on Radiation-Induced Latchup in
Space Systems”, IEEE Transactions on Nuclear Science, vol. 43, no. 2, Apr. 1996, pp. 505-521.

Modern CMOS technologies have:
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P.E. Dodd et al., “Impact of technology trends on SEU in CMOS SRAMs”, IEEE
Transactions on Nuclear Science, vol. 43, no. 6, Dec. 1996, pp. 2797-2804.

• VDD reduced

• Node C reduced

SEU and scaling
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SEGR and scaling

F.W. Sexton, D.M. Fleetwood et al., “Single Event Gate Rupture in Thin Gate Oxides”,
IEEE Transactions on Nuclear Science, vol. 44, no. 6, December 1997, pp. 2345-2352.

Maximum electric
field for a quarter
micron technology

decreasing tox
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• Ionizing radiation effects on CMOS ICs
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• The Enclosed Layout Transistor (ELT)
• The use of guard rings
• SEE tests

• Circuit examples

• Conclusions



Giovanni ANELLI -  CERN

SD

G

S D

G

Enclosed Layout Transistor (ELT)

ELTs solve the leakage problem in the NMOS transistors

At the circuit level, guard rings are necessary
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n+ drain
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W/L = 8a/L + 4
Area = 4(a+b+L)

2

Waste of area

Increase in the parasitic gate
and source/drain capacitance

Modeling problems

Lack of symmetry

Balancing of n- and p-channel

Another possible solution?

Drawbacks of ELTs

p+ diffusion
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Aspect ratio modeling

Calc. W/L

14.8
11.3
8.3
5.1
3

2.6

Extr. W/L

15
11.2
8.3
5.2
3.2
2.6

L (µm)

0.28
0.36
0.5
1
3
5

1

1

32
2

L

d
d’

αL

Gate

S or D c

Drain and Source diffusion

D or S

L
W

32K4 ++

1 2 3

Ld
d
2'
'

ln

2

α

α

L

dd
2

'

1
ln522

1
1

⋅
ααα

α

2
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Effectiveness of ELTs
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Effectiveness of ELTs
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ELT & deep submicron

0.25 µm technology - tox = 5 nm
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N-channel noise spectrum
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Field oxide leakage
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Ring oscillators (49 inverters)
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metal polysilicon

p+ guard ring n+ guard ring
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Radiation tolerant layout approach
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SEL and SEGR tests

NO latch-up observed up to 89 MeVcm2mg-1

The systematic use of guard rings is an
effective tool against SEL

F. Faccio et al., “Single Event Effects in Static and Dynamic Registers in a 0.25 µm CMOS
Technology”, IEEE Transactions on Nuclear Science, vol. 46, no. 6, Dec. 1999 , pp. 1434-1439.

NEVER observed in our circuits
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Single Event Upset tests
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Static register, un-clocked mode

Design hardened register: LETth between 63 and 89 MeVcm2mg-1

at 89 MeVcm2mg-1, σ < 10-8 cm2/bit

F. Faccio et al., “Single Event Effects in Static and Dynamic Registers in a 0.25 µm CMOS
Technology”, IEEE Transactions on Nuclear Science, vol. 46, no. 6, Dec. 1999 , pp. 1434-1439.
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Comparison with the general trend

This static cell

P.E. Dodd et al., “Impact of technology trends on SEU in CMOS SRAMs”, IEEE
Transactions on Nuclear Science, vol. 43, no. 6, Dec. 1996, pp. 2797-2804.
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∆Vth ∝ tox
n

+ ELT’s and
guard rings =

TID
Radiation
Tolerance

Deep sub-µm means also:

speed
low power
VLSI
low cost
high yield

Radiation tolerant layout approach
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Density and speed

A & B : 0.6 µm standard

C & D : 0.25 µm rad-tol
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Outline
• CMOS technologies

• The concept of scaling

• Scaling impact on device and circuit performance

• Ionizing radiation effects on CMOS ICs

• Scaling impact on radiation tolerance

• Radiation tolerant design

• Circuit examples

• Conclusions
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NA60 proton beamscope chip
 Layout of a fast charge amplifier used to read the

signals coming from a microstrip detector

50 µm * 150 µm
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Layout detail
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The ALICE1LHCb pixel chip

Full chip 8192 readout channels
13 M transistors in 14 by 16 mm2
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Conclusions

• CMOS technologies are (and will be) the most
widespread in the IC world: it is therefore convenient
for us to use them

• They can be used to make radiation tolerant circuits
(with some special tricks...)

• To continue to use them in the future for HEP
experiments several new problems will have to be
addressed, such as how to make analog circuits with
ULSI CMOS technologies
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